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Background: Research on predictors of working memory training responsiveness,

which could help tailor cognitive interventions individually, is a timely topic in healthy

aging. However, the findings are highly heterogeneous, reporting partly conflicting results

following a broad spectrum of methodological approaches to answer the question “who

benefits most” from working memory training.

Objective: The present systematic review aimed to systematically investigate prognostic

factors and models for working memory training responsiveness in healthy older adults.

Method: Four online databases were searched up to October 2019 (MEDLINE

Ovid, Web of Science, CENTRAL, and PsycINFO). The inclusion criteria for full texts

were publication in a peer-reviewed journal in English/German, inclusion of healthy

older individuals aged ≥55 years without any neurological and/or psychiatric diseases

including cognitive impairment, and the investigation of prognostic factors and/or models

for training responsiveness after targeted working memory training in terms of direct

training effects, near-transfer effects to verbal and visuospatial working memory as well

as far-transfer effects to other cognitive domains and behavioral variables. The study

design was not limited to randomized controlled trials.

Results: A total of 16 studies including n = 675 healthy older individuals with a mean

age of 63.0–86.8 years were included in this review. Within these studies, five prognostic

model approaches and 18 factor finding approaches were reported. Risk of bias was

assessed using the Quality in Prognosis Studies checklist, indicating that important

information, especially regarding the domains study attrition, study confounding, and

statistical analysis and reporting, was lacking throughout many of the investigated

studies. Age, education, intelligence, and baseline performance in working memory or

other cognitive domains were frequently investigated predictors across studies.

Conclusions: Given the methodological shortcomings of the included studies, no

clear conclusions can be drawn, and emerging patterns of prognostic effects will have
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to survive sound methodological replication in future attempts to promote precision

medicine approaches in the context of working memory training. Methodological

considerations are discussed, and our findings are embedded to the cognitive

aging literature, considering, for example, the cognitive reserve framework and the

compensation vs. magnification account. The need for personalized cognitive prevention

and intervention methods to counteract cognitive decline in the aging population is high

and the potential enormous.

Registration: PROSPERO, ID CRD42019142750.

Keywords: prognostic review, systematic review, healthy aging, working memory training, training

responsiveness, individual differences

INTRODUCTION

The promotion of healthy aging constitutes amajor goal given the
demographic change that the world’s population is facing (Parish
et al., 2019). One key aspect of healthy aging is the maintenance
of cognitive functions by preventing or delaying the onset of
clinically relevant cognitive dysfunction or even reversing age-
related cognitive decline (Lustig et al., 2009). Cognitive decline
is one of the most feared aspects in aging (Deary et al., 2009),
as it reduces the quality of life of both the aging individual
and his/her relatives and increases the burden on care providers
and the public healthcare system. Decline of executive functions,
working memory, processing speed, and memory—cognitive
functions that are essential for everyday functioning—is the most
prominent cognitive alteration in healthy aging (Paraskevoudi
et al., 2018). Especially working memory, a capacity-limited
system for short-term storage and manipulation of information,
is of fundamental importance for general cognitive functioning
and is seen as a key function and processing resource for other
cognitive abilities (Salthouse, 1990; Chai et al., 2018).

Cognitive training interventions, as a non-pharmacological
intervention and prevention method, have gained increased
scientific interest (Lustig et al., 2009). A recent meta-analysis
of Chiu et al. (2017) on broad cognitive interventions in
healthy older adults clearly indicated the potential of cognitive
interventions to counteract cognitive decline. However, some
issues such as the degree of transfer to untrained tasks and
long-term effects remain a matter of debate. In this context,
working memory has become a main target for cognitive
training interventions. The role of working memory as a
processing resource for other cognitive abilities (Salthouse,
1990; Chai et al., 2018) implies that working memory
improvements after targeted working memory training (WMT)
might naturally lead to positive transfer effects to other
cognitive functions and even fluid intelligence (Au et al.,
2015). Despite a general consensus regarding the effectiveness
of targeted WMT regarding direct training effects (i.e., effects
in trained working memory tasks over the course of training)
and near-transfer effects (i.e., effects in untrained working
memory tasks), evidence on far-transfer effects (i.e., effects
in untrained domains) for different populations including
healthy older adults has not convincingly been shown (for

recent meta-analyses see e.g., Melby-Lervåg et al., 2016;
Weicker et al., 2016; Soveri et al., 2017; Sala et al., 2019;
Teixeira-Santos et al., 2019). Given those heterogeneous results
concerning effects after WMT, identifying modifying, so-called
prognostic or moderating, factors (including both individual-
and training-related characteristics) of WMT responsiveness
seems highly relevant.

In general, a prognostic factor is defined as any measure
that, among people with a given condition (e.g., the process of
aging), is associated with a subsequent outcome (e.g., changes
in cognition after certain interventions) (Riley et al., 2013).
In prognostic research, prognostic factor finding studies and
prognostic model studies are distinguished: prognostic factor
finding studies aim at establishing one or several variables as
independent prognostic factors associated with an outcome.
In contrast, prognostic model studies identify more than one
prognostic factor, assign relative weight to each prognostic
factor, and estimate the model’s predictive performance through
calibration and discrimination (Moons et al., 2009). Identifying
prognostic factors for individual treatment response to WMT
would take into account individual differences in cognitive
plasticity and following responsiveness to cognitive training
interventions (Baltes and Lindenberger, 1988; Noack et al., 2009;
Bürki et al., 2014). It would further contribute to the development
of an encompassing approach in terms of a “personalized” or
“precisionmedicine” (Hingorani et al., 2013) in healthy aging and
the prevention of cognitive decline, for example, in the context of
Alzheimer’s disease (Reitz, 2016; Berkowitz et al., 2018).

The latest meta-analysis on WMT for healthy older adults
(Teixeira-Santos et al., 2019) included a broadmoderator analysis
for WMT responsiveness. Despite training-related variables (e.g.,
training dose and length, number of sessions, training type),
study population characteristics (e.g., age, education, general
cognitive ability, baseline performance) were considered as
moderating variables (Teixeira-Santos et al., 2019). The meta-
analysis mainly identified training-related characteristics as
moderating variables for WMT response: for example, longer
training durations in hours were associated with smaller effect
sizes across studies (Teixeira-Santos et al., 2019). Note, however,
that whereas prognostic factors are, per definition, measured
and investigated on an individual-person level, the moderator
analysis approach within the standard meta-analytical approach
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investigates modifying factors on an aggregated, study-wide level,
i.e., across many individuals (e.g., mean age of participants, mean
years of education). Therefore, interindividual variance of those
parameters and corresponding differential training outcomes
within the single-study populations are neglected in the meta-
analysis of Teixeira-Santos et al. (2019). A focus on research using
prognostic approaches on a single-study level would therefore
substantially expand upon already existing data.

Prognostic research on treatment responsiveness after WMT
has received increasing interest on a single-study level as well.
However, data are inconclusive yet, as findings are highly
heterogeneous and inconsistent, and prognostic approaches
are often considered as an add-on analysis beyond standard
effectiveness evaluations only. It seems that, especially if an
intervention did not yield an overall positive effect, researchers
tend to exploratively analyze prognostic factors of training
responsiveness. One could argue that conducting prognostic
analyses on null effects might be dealing with pure noise.
However, prognostic research is obliged to detangle predictors
of systematic retest effects, such as practice effects or regression
to the mean, from predictors of treatment response (Hingorani
et al., 2013). Therefore, it is tremendously important to compare
the prognostic factors between a control group and the group
receiving the treatment of interest (Hingorani et al., 2013). To
anticipate one weakness of prognostic research in the context of
cognitive interventions including WMT so far, prognostic effects
are often investigated with data of the experimental group only.

Two of the most frequently investigated prognostic factors
for WMT responsiveness are baseline performance in working
memory or the respective cognitive outcome and general
cognitive ability (e.g., Zinke et al., 2014; Borella et al., 2017b;
Matysiak et al., 2019). For both, inconsistent findings exist, which
can be discussed within the compensation vs. magnification
framework (Lövdén et al., 2012). Following the compensation
account, individuals with lower baseline performance would
show higher training benefits because they have more room for
improvement. On the contrary, the magnification hypothesis
constitutes that individuals with higher abilities would benefit
most, as they have more resources “to acquire, implement,
and sharpen effortful cognitive strategies” (Lövdén et al., 2012).
Similar inconsistent evidence exists, e.g., for age (e.g., Borella
et al., 2013, 2014, 2017b; Zinke et al., 2014; Simon et al., 2018)
and other demographic factors such as education (Clark et al.,
2016; Mondini et al., 2016; Borella et al., 2017b; Matysiak et al.,
2019) and sex (Rahe et al., 2015; Matysiak et al., 2019; Roheger
et al., 2019). Furthermore, motivational processes (West et al.,
2008; Kalbe et al., 2018) and personality traits (Studer-Luethi
et al., 2012; Double and Birney, 2016) might constitute important
individual characteristics predicting training responsiveness
as well. Finally, genetic variation (Brehmer et al., 2009;
Bellander et al., 2011; Bäckman and Nyberg, 2013) and brain
imaging parameters (Stern, 2009; Heinzel et al., 2014a) might
reflect meaningful proxies for the potential to engage in
cognitive plasticity following cognitive training interventions. To
summarize, a broad spectrum of potential prognostic factors to
predict individual training responsiveness is discussed; however,
data are inconclusive yet. Therefore, systematic reviews and

meta-analyses to summarize existing evidence about prognostic
factors and models of individual treatment response in the
context of cognitive interventions in general and WMT in
particular are urgently needed but missing so far.

On the basis of the aforementioned considerations, the
present systematic review aimed to systematically investigate
prognostic factors and models for WMT responsiveness in
healthy older adults. We further aimed to meta-analyze groups of
“similar” prognostic effect measures to quantitatively investigate
the predictive performance of the different prognostic factors.
However, to anticipate one limitation of this work, data on
prognostic factors after WMT were too heterogeneous and too
poorly reported to conduct this meta-analysis after all.

Our systematic review question was defined using the PICOTS
system as proposed by the Checklist for Critical Appraisal and
Data Extraction for Systematic Reviews of Prediction Modeling
Studies (CHARMS) (Moons et al., 2014; Debray et al., 2017; Riley
et al., 2019). Our target population (P) consisted of healthy (i.e.,
absence of any neurological or psychiatric disease) older (aged
≥ 55 years) individuals. The target intervention (I) was single-
domain WMT. No comparator factor (C) is being considered.
The outcome variables (O) for this review are training and
near-transfer effects to the domains of verbal and visuospatial
working memory as well as far-transfer effects to other cognitive
domains and behavioral variables, if applicable, operationalized
with objective and standardized instruments, after targeted
WMT. The timing (T) of recording the relevant variables is the
baseline assessment for prognostic factors and all time points
of measurement for outcome variables, including follow-ups.
The setting (S) was supposed to be a non-clinical one to gain
prognostic information on possibilities of enhancing cognitive
functioning and the prevention of cognitive decline in cognitively
healthy individuals.

METHODS

The preregistered review protocol of the present systematic
review can be accessed through https://www.crd.york.ac.uk/
PROSPERO/ (ID: CRD42019142750). The reporting follows
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guideline for systematic reviews
and meta-analyses (Moher et al., 2009). The PRISMA
checklists for abstracts and systematic reviews are displayed in
Supplementary Material 1.

Search Strategy
As prognostic studies are often not indexed, a broad and rather
unspecific search filter was used (Riley et al., 2019).We conducted
a systematic search throughout four online databases up to
October 2019: MEDLINE Ovid, Web of Science Core Collection,
CENTRAL, and PsycINFO. A series of keywords which were
expected to appear in the title or the abstract of any study
containing analyses on prognostic factors or models for WMT
success was created. The keywords used can be grouped into
three main categories. The first category aimed to identify studies
including healthy older adults as participants (e.g., “healthy
elderly,” “healthy aging,” “older adults”). The second category was
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used to detect a broad spectrum of interventional studies not
only covering “working memory training” but also a broader
spectrum of cognitive interventions (e.g., “cognitive training,”
“reasoning training”) and even interventional studies per se (e.g.,
“training,” “intervention”). This broad intervention category was
built to ensure the search strategy to cover all kinds of WMT
that are differentially labeled in literature. The third category
was included to ensure (working) memory to be a central
construct of the included studies (“memory”). In addition to
the systematic database search, the reference lists of all relevant
full texts, review articles, and current treatment guidelines were
hand-searched for further suitable articles. Further information
and full search strings for each database can be obtained from
Supplementary Material 2.

Study Selection and Data Extraction
Title and abstract screening with predefined eligibility criteria
was conducted by two reviewers (AKF and MR or AO and
MR) in Covidence Systematic Review Software (Veritas Health
Innovation, available at www.covidence.org). Then, the full-text
articles were screened for final inclusion in the systematic review
by two reviewers (AO and MR). If a full text was not available
online, we contacted the corresponding authors and asked them
to provide the full-text publication within 2 weeks of time. If
no consensus was reached between the two reviewers (AO and
MR), the plan was to discuss the case with a third author (NS)
until a final consensus was reached; however, this option was not
needed. Relevant data considering general study characteristics
(e.g., participants’ demographics, WMT features) and prognostic
factor and/or model analyses were independently extracted by
two reviewers (AO andMR) according to the CHARMS checklist
(Moons et al., 2014).

Eligibility Criteria
The inclusion criteria for our systematic review were (i) full-
text research article publication until October 2019 in a peer-
reviewed journal in English or German, (ii) inclusion of healthy
older individuals aged ≥55 years without any neurological
and/or psychiatric diseases including cognitive impairment (mild
cognitive impairment or dementia) as well as uncorrected
seeing or hearing impairments assessed via self-report, and
(iii) investigation of prognostic factors and/or models for
training responsiveness in terms of direct training and near-
transfer effects to verbal and visuospatial working memory
as well as far-transfer effects to other cognitive domains
and behavioral variables, operationalized with objective and
standardized instruments, after targeted WMT.

Age of ≥55 years was chosen as a cutoff, as we, on the one
hand, wanted to provide an objective age cutoff for individuals
within the included studies and, on the other hand, did not
want to exclude studies including healthy older individuals just
below the frequently used cutoff of ≥60 years (e.g., Soveri
et al., 2017; Sala et al., 2019). Targeted WMT was defined as a
cognitive training either computerized, with paper–pencil tasks,
or mixed, which is administered either on personal devices or
in individual or group settings, with a minimum of two training
sessions. When multi-domain trainings were examined, working

memory had to be the main component of the program (defined
as being the main target in at least 80% of the exercises).
Verbal and visuospatial working memory, i.e., direct training
and near-transfer effects, were defined as primary outcomes,
with direct training effects constituting effects in trained working
memory tasks over the course of training and with near-
transfer effects constituting effects in untrained working memory
tasks. Other cognitive far-transfer outcomes (i.e., effects in
untrained cognitive domains, e.g., global cognition, memory,
fluid intelligence, executive functions, attention) and clinical and
patient-centered outcomes (e.g., depressive symptoms, quality of
life) were considered as secondary outcomes. Both primary and
secondary outcomes needed to be assessed with established and
objective psychometric instruments.

For the systematic review, we considered all prognostic
factors (e.g., sociodemographic factors, cognitive abilities at
the entry of training, brain imaging parameters, genetic
parameters, personality traits, training-related characteristics),
which investigate critical aspects of WMT responsiveness. As
outlined in the introduction, a prognostic factor is defined
as any measure that, among people with a given condition
(e.g., the process of aging), is associated with a subsequent
outcome (e.g., changes in cognition after certain interventions)
(Riley et al., 2013). Prognostic factor finding studies aim at
establishing one or several variables as independent prognostic
factors associated with an outcome. In contrast, prognosticmodel
studies identify more than one prognostic factor, assign relative
weights to each prognostic factor, and estimate the model’s
predictive performance through calibration and discrimination
(Moons et al., 2009). We included all studies investigating
prognostic factors and/or prognostic models regardless of
whether or not significant general training effects and/or
significant relationships between prognostic factors and training
responsiveness were found.

Quality Assessment
Using the Quality in Prognosis Studies (QUIPS) checklist
(Hayden et al., 2013), risk of bias of the included studies was
examined independently by two reviewers (AO and MR) across
six domains: study participation, study attrition, prognostic
factor measurement, outcome measurement, adjustment for
other prognostic factors, statistical analyses, and reporting. Each
domain was overall rated with high, moderate, or low risk,
depending on the rating in the corresponding items. A detailed
description of the QUIPS checklist, including each item and
the overall judgment rules implemented by the two reviewers,
is presented in Supplementary Material 3. Instead of using two
different risk of bias assessment tools [QUIPS (Hayden et al.,
2013) for prognostic factor finding studies and Prediction Model
Risk of Bias Assessment Tool (Wolff et al., 2019) for prognostic
model studies], risk of bias of both prognostic factor finding and
prognostic model studies was assessed with the QUIPS tool to get
a comparable risk of bias rating.

Data Analysis
Initially and as stated in the pre-registration of the study, we
aimed to meta-analyze groups of “similar” prognostic effect
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measures with a random effects approach to investigate the
predictive performance of the different prognostic factors.
However, after data extraction, we had to ascertain that data
on prognostic factors after WMT were too heterogeneous and
too poorly reported to conduct this meta-analysis. The main
reason was that we were not able to compute comparable
effect size measures (e.g., odds ratios, hazard ratios) to

meta-analyze the prognostic effects reported in the studies
due to the fact that either data were not reported and could
not be assessed within studies or data were not consistent
enough across studies to pool the results. Therefore, the
systematic review focused on the qualitative directionality of the
prognostic effects reported in the included studies rather than
their magnitude.

FIGURE 1 | Preferred reporting items for systematic reviews and meta-analyses flow diagram.
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RESULTS

Study Flow
A total of 12,966 records were identified through our database
search. After removing duplicates, titles and abstracts of 9,583
records were screened for eligibility. As prognostic analyses
are often not indexed, title and abstract screening focused
on the content-related criteria “healthy older individuals” and
“working memory training.” Thus, 138 full texts were screened
for eligibility. Finally, n= 16 studies were included in the present
systematic review [for details on study flow and reasons for
exclusion, see Figure 1 (PRISMA flow diagram)].

Descriptive Characteristics of the Included
Studies
Within the 16 studies, n = 675 healthy older individuals, with
age ranging from a mean of 63.0 years (Brehmer et al., 2011)
to 86.8 years (Zinke et al., 2012), were investigated, of which
63% were women. Years of formal education ranged from a
mean of 5.72 years (Borella et al., 2013) to 18.65 years (Tusch
et al., 2016). Throughout the studies, different training regimes
that varied in terms of setting, number of sessions, total time
of training, and training tasks were applied. The number of
training sessions ranged from three (Borella et al., 2013, 2014,
2017a,b,c; Brum et al., 2018) to 25 (Brehmer et al., 2011;
McAvinue et al., 2013; Tusch et al., 2016; Simon et al., 2018;
Matysiak et al., 2019), with the total time of training ranging
from 105min (Brum et al., 2018) to 1,000min (Tusch et al.,
2016); 44% of trainings addressed verbal working memory only
and 50% followed a mixed approach, addressing both verbal
and visuospatial working memory. Only one study conducted
a multi-domain WMT, as next to working memory tasks one
executive control task was included within the training regime
(Zinke et al., 2014). All training regimes were conceptualized
as adaptive, except for those studies in which adaptivity was
investigated as a prognostic factor for WMT responsiveness
(Brehmer et al., 2011; Tusch et al., 2016; Simon et al., 2018;
Weicker et al., 2018).

In total, nine studies applied digital WMT: four studies used
commercially available digital WMT programs (Cogmed and
WOME/ RehaCom R©) (Brehmer et al., 2011; Tusch et al., 2016;
Simon et al., 2018; Weicker et al., 2018), three studies used a
digital n-back training (Heinzel et al., 2014a,b; Matysiak et al.,
2019), and two used a study–individual composition of digital
WMT tasks (McAvinue et al., 2013; Borella et al., 2014). Five
studies used a WMT with the Categorization Working Memory
Span (CWMS) Task based on audio recordings (Borella et al.,
2013, 2017a,b,c; Brum et al., 2018); however, all of these studies
were conducted by the same group of researchers. Only two
studies used paper–pencil WMT (Zinke et al., 2012, 2014) (for
details on the study, participants, and training characteristics, see
Table 1).

Reporting Quality and Risk of Bias
Table 2 reports the risk of bias per study across six domains
evaluated with the QUIPS checklist (Hayden et al., 2013).
A detailed risk of bias assessment on a single item level

rather than QUIPS domain ratings can be obtained from
the corresponding author. Important information is lacking
throughout many of investigated studies, especially regarding
the domains study attrition, study confounding, and statistical
analysis and reporting. Most notably, the appropriate selection
of the analysis plan and reporting of both the statistical analyses
and results are often fragmentary. Only for the domains of
prognostic factor measurement and outcome measurement were
the majority of studies rated with low risk. In summary, the
reporting quality was partly insufficient, and the results should
be interpreted cautiously.

Unfortunately, the initially planned meta-analysis could not
be performed as the applied analytical approaches, as described
below, were too heterogeneous and the reported results did
not allow to compute comparable effect size measures (e.g.,
odds ratios, hazard ratios) across studies to meta-analyze the
prognostic effects. Therefore, only a systematic review focusing
on the directionality of prognostic effects rather than their
magnitude was performed.

Prediction Analyses and Outcome
Measures
Seven of the 16 prognostic studies used more than one prediction
analysis account to predict WMT responsiveness (one study
included both a prediction model and a factor finding approach;
six studies included more than one factor finding approach,
i.e., investigated the prognostic value of one or several variables
with at least two different approaches). Five studies investigated
prediction models, three of which used hierarchical regression
analyses (Heinzel et al., 2014a; Zinke et al., 2014; Borella et al.,
2017c) with change scores or relative change scores as dependent
variables. One study used Bayesian modeling approach (Borella
et al., 2017b) and one used linear mixed effect modeling
(Simon et al., 2018), both with time as one predictor, therefore
abandoning the use of change scores as dependent variable.
Ten studies were factor finding studies, including a total of
18 factor finding analysis approaches: seven used a generalized
linear model approach (e.g., ANOVA) (Brehmer et al., 2011;
Zinke et al., 2012; Borella et al., 2014; Heinzel et al., 2014b;
Tusch et al., 2016; Brum et al., 2018; Weicker et al., 2018),
one used ANCOVA (Borella et al., 2017a), five used Pearson
correlations (Brehmer et al., 2011; Zinke et al., 2012; McAvinue
et al., 2013; Heinzel et al., 2014a; Tusch et al., 2016), and one
used linear regressions (Weicker et al., 2018) and one Linear
Mixed Models (Matysiak et al., 2019). Three studies used a
(descriptive) comparison of effect sizes (Borella et al., 2013,
2014; Brum et al., 2018). For the generalized mixed model
approach, 71% used time as a predictor and only 29% used
raw or standardized change scores as a dependent variable. For
ANCOVA, the post-test score was used as a dependent variable.
Pearson correlations and linear regressions used (standardized)
change scores as dependent variables; for the linear mixed model,
time was used as a predictor. None of the studies compared
prognostic factors or models between the trained group and
a passive control group, i.e., they analyzed the data of trained
groups only. To summarize, even though prediction approaches
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TABLE 1 | Study objectives, participants’ demographics, and working memory training characteristics.
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na Age

(in years)

Sex Education

(in years)

Global cognition Total time of training

(in minutes) and setting

Description of training

Borella et al.

(2013)

X X 38 Young-oldb 69.00

(3.18), 65-75;

old-old

79.22 (3.49), 75–87

Young-old 13 ♀, 7

♂;

old-old 12 ♀, 6 ♂

Young-old 9.40 (3.95);

old-old 5.72 (2.52)

Vocabulary score WAIS-Rc,

max. 70;

Young-old 46.65 (8.64);

old-old 42.72 (9.04)

180 (three sessions of

60min over 2 weeks)

individual setting

Adaptive verbal working memory

training with the Categorization

Working Memory Span (CWMSd)

Task via audio-recordings

Borella et al.

(2014)

X X X 40

40

Young-old 69.90

(2.79), 65–75;

old-old

79.60 (2.28), 76–84

n.a. Young-old 10.65 (2.50);

old-old 8.75 (1.33)

Vocabulary score WAIS-Rc,

max. 70;

young-old 49.25 (5.82);

old-old 50.15 (4.57)

180 (three sessions of

60min over 2 weeks)

individual setting

Adaptive visuospatial working

memory training with a

computerized version of the

Matrix Taske

Borella et al.

(2017b)f
X X 73 71.63 (5.53), 61–87 n.a. 9.42 (4.54) Vocabulary score WAIS-Rc,

max. 70; 49.21 (10.89)

180 (three sessions of

60min over 2 weeks)

individual setting

Adaptive verbal working memory

training with the CWMSd Task via

audio-recordings

Borella et al.

(2017a)

X X 54 Mozart

70.15 (2.79);

Albinoni

69.31 (3.30);

White noise

68.18 (3.48); 65–75

Mozart

11 ♀, 8 ♂;

Albinoni

7 ♀, 12 ♂;

White noise

12 ♀, 4 ♂

Mozart

13.84 (2.91);

Albinoni

14.73 (2.15);

White noise

13.06 (4.00)

n.a. 180 (three sessions of

60min over 2 weeks)

individual setting

6min of listening to music

according to experimental

condition followed by adaptive

verbal working memory training

with the CWMSd Task via

audio-recordings

Borella et al.

(2017c)

X X X 36 WM

69.44 (3.73);

WM+S

67.94 (4.89)

WM

10 ♀, 8 ♂;

WM+S

13 ♀, 5 ♂

WM 14.39 (2.87);

WM+S 13.56 (2.92)

Vocabulary score WAIS-Rc,

max. 70; WM 61.72 (5.63);

WM+S 58.39 (9.89)

105 (three sessions of

35min over 2 weeks)

individual setting

Adaptive verbal working memory

training with the CWMSd Task via

audio-recordings; for the WM+S

group preliminary instructions to

use a visual mental imagery

strategyg

Brehmer et al.

(2011)

X X X 24 63.6 (SD n.a.); 60–70 12 ♀, 12 ♂ n.a. n.a. 625 (25 sessions of 25min

over 5 weeks)

home-based individual

setting

Adaptive vs. non-adaptive (fixed

at low level) both verbal and

visuospatial working memory

training with the computerized

Cogmedh training program

Brum et al.

(2018)

X X 41 Three sessions

67.17 (4.40);

six sessions

67.91 (3.61)

n.a. Three sessions

9.50 (5.25);

six sessions

7.57 (3.34)

Clock Drawing Testi, max. 10;

three sessions 9.00 (1.13);

six sessions 8.83 (0.98)

Three sessions:

105 (three sessions of

35min over 1 week)

Six sessions:

210 (six sessions of 35min

over 2 weeks)

individual setting

Adaptive verbal working memory

training with the CWMSd Task via

audio-recordings

Heinzel et al.

(2014a)

X X X 19 66.0 (3.73); 61–75 6 ♀, 13 ♂ 15.61 (3.26) n.a. 540 (12 sessions of 45min

over 4 weeks)

individual setting

Adaptive computerized

numerical n-back training

paradigml

(Continued)
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TABLE 1 | Continued

Study Analysis Prognostic

factors

Participants Training

Author

(year)
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T
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-
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te
d

na Age

(in years)

Sex Education

(in years)

Global cognition Total time of training

(in minutes) and setting

Description of training

Heinzel et al.

(2014b)

X X 25 Val/Valj

67.36 (4.34);

any Met

64.64 (3.37)

Val/Val

5 ♀, 6 ♂;

any Met

7 ♀, 7 ♂

Val/Val

15.46 (3.15);

any Met

16.88 (3.62)

MMSEk, max. 30;

Val/Val 29.27 (1.01);

any Met 29.64 (0.84)

540 (12 sessions of 45min

over 4 weeks)

individual setting

Adaptive computerized

numerical n-back training

paradigml

Matysiak et al.

(2019)

X X 43 65.9 (SD n.a.) 28 ♀, 15 ♂ n.a.

Education dichotomized

into higher (n = 27) vs.

secondary (n =

16) education

operation span (OSPAN)m

score, max. n.a.;

15.31 (SD n.a.)

500 (25 sessions of 20min

over 5 weeks)

home-based

individual setting

Adaptive computerized dual

(visuo-spatial and

auditory/verbal) n-back training

paradigmn

McAvinue et al.

(2013)

X X 19 69.89 (4.5); 64–79 13 ♀, 6 ♂ n.a.

educational levels only:

primary school n = 1;

leaving certificate n = 2;

undergraduate n = 10;

postgraduate n = 6

MMSEk, max. 30;

27.74 (2.05);

AMNART IQo, max. n.a.;

120.47 (4.44)

750 (25 sessions of 30min

over 5 weeks)

home-based

individual setting

Adaptive computerized verbal

and visuo-spatial working

memory training plus

psychoeducation on everyday

cognitive strategies

Simon et al.

(2018)

X X X 82 Adaptive

72.4 (5.6);

non-adaptive

73.7 (6.5)

Adaptive

29 ♀, 12 ♂;

non-adaptive

26 ♀, 15 ♂

Adaptive

15.7 (3.7);

non-adaptive 15.3 (3.2)

MMSEk, max. 30;

adaptive 29.2 (1.1);

non-adaptive 29.0 (1.3);

AMNART IQo, max. n.a.;

adaptive 122.6 (5.9);

non-adaptive 120.6 (6.0)

1,000 (25 sessions of

40min over 5 weeks)

home-based

individual setting

Adaptive vs. non-adaptive (fixed

at low level) both verbal and

visuospatial working memory

training with the computerized

Cogmedh training program

Tusch et al.

(2016)

X X X 41 Adaptive

74.47 (6.26);

non-adaptive

76.84 (5.95)

Adaptive

12 ♀, 5 ♂;

non-adaptive

15 ♀, 3 ♂

Adaptive

18.65(2.98);

non-adaptive 16.78(2.05)

MMSEk, max. 30;

adaptive 29.41 (0.71);

non-adaptive 28.89 (1.68);

AMNART AMNART IQo, max.

n.a.;

adaptive 123.59 (4.00);

non-adaptive

119.33 (5.86) 119.33 (5.86)

1,000 (25 sessions of

40min over 5 weeks)

home-based individual

setting

Adaptive vs. non-adaptive (fixed

at low level) both verbal and

visuospatial working memory

training with the computerized

Cogmedh training program

Weicker et al.

(2018)

X X X 40 Adaptive

67.8 (3.9);

non-adaptive

67.7 (3.1) 67.7 (3.1)

Adaptive

10 ♀, 10 ♂;

non-adaptive

11 ♀, 9 ♂

n.a.

categorized only:

<9 years n = 4;

10–12 years n = 16;

>12 years n = 20

n.a. 540 (12 sessions of 45min

over 4 weeks)

individual setting

Adaptive

vs. non-adaptive (fixed at

low-level) working memory

training with the computerized

WOMEp (WOrking MEmory)

training program

(Continued)
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TABLE 1 | Continued

Study Analysis Prognostic
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na Age
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(in years)

Global cognition Total time of training

(in minutes) and setting

Description of training

Zinke et al.

(2012)

X X 20 86.8 (4.9); 77–96 14 ♀, 6 ♂ 11.7 (3.3) MMST short form for old-old

adultsq, max. 21;

19.4 (1.4)

275 (10 sessions of

25–30min over 2 weeks)

individual setting

Adaptive paper–pencil verbal and

visuo-spatial working memory

training

Zinke et al.

(2014)

X X 40 76.7 (8.4); 65–95 32 ♀, 8 ♂ 14.4 (3.4) MMST short form for old-old

adultsq, max. 21;

20.2 (1.1)

270 (nine sessions

of 30min over 3 weeks)

individual setting

Adaptive paper–pencil verbal and

visuo-spatial working memory

and executive control training

aNumber of participants in the working memory training group.
bYoung-old sample from Borella et al. (2010).
cWAIS-R, Wechsler Adult Intelligence Scale-revised manual. Wechsler (1981).
dCWMS, Categorization Working Memory Span. De Beni et al. (2008). Training procedure introduced by Borella et al. (2010).
eAdapted from Cornoldi et al. (2007) and Carretti et al. (2012).
fpost-hoc analysis of Borella et al. (2010, 2013, 2017c); Carretti et al. (2013).
gAs described in Carretti et al. (2007).
hFor details about the adaptive training algorithm, see Cogmed QM; www.cogmed.com; Klingberg et al. (2002).
iAprahamian et al. (2010) and Shulman (2000).
jCarriers of either Val/Met or Met/Met COMT (catechol-O-methyltransferase) genotype were classified into one group (any Met) and contrasted with Val/Val carriers.
kMMSE, Mini-Mental State Examination; Folstein et al. (2010).
lGevins and Gevins and Cutillo (1993).
mComputerized version of the original OSPAN task; Turner and Engle (1989).
n Introduced by Jaeggi et al. (2008).
oAMNART, American National Adult Reading Test; Nelson (1982).
pWOME, WOrking MEmory; part of the cognitive rehabilitation program RehaCom®.
qMini-Mental State Examination short form for old-old adults by Kliegel et al. (2001).
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Ophey et al. Prognostic Review Training Responsiveness

TABLE 2 | Risk of bias assessment using the QUIPS checklist.

References Study participation Study attrition Prognostic factor

measurement

Outcome

measurement

Study confounding Statistical analysis

and reporting

Borella et al. (2013)

Borella et al. (2014)

Borella et al. (2017b)

Borella et al. (2017a)

Borella et al. (2017c)

Brehmer et al. (2011)

Brum et al. (2018)

Heinzel et al. (2014a)

Heinzel et al. (2014b)

Matysiak et al. (2019)

McAvinue et al. (2013)

Simon et al. (2018)

Tusch et al. (2016)

Weicker et al. (2018)

Zinke et al. (2012)

Zinke et al. (2014)

Overall risk of bias rating of domains in the Quality in Prognosis Studies (QUIPS) checklist (Hayden et al., 2013). Red, high risk; yellow, moderate risk; green, low risk. For details on

individual items and rating scheme, please refer to Supplementary Material 3.

were highly heterogeneous, analyses were comparable within the
different approaches.

We defined verbal and visuospatial working memory, i.e.,
direct training and near-transfer effects, as primary outcomes.
Most of the included studies distinguished between these two
domains; however, four studies did not (Brehmer et al., 2011;
Zinke et al., 2012; Simon et al., 2018; Weicker et al., 2018), and
four studies addressed verbal working memory only (Heinzel
et al., 2014a,b; Tusch et al., 2016; Matysiak et al., 2019).
Three of the 16 included studies (18.8%) investigated direct
training effects (i.e., effects in trained tasks) only (Heinzel et al.,
2014a,b; Matysiak et al., 2019). The majority of studies (62.5%)
investigated a combination of direct training, near-transfer
(i.e., untrained working memory tasks), and several far-transfer
measures, defined as secondary outcomes in our systematic
review. Frequently investigated far-transfer cognitive domains
were executive functions (including verbal fluency, reasoning,
inhibition, set shifting, and executive control), processing speed
(short-term), memory, and fluid intelligence. Only one study
investigated non-cognitive outcomes (anxiety and depression)
(McAvinue et al., 2013). Only three of the included studies
(18.8%) did not apply a prognostic approach for at least one
direct training outcome and instead focused on near- and
far-transfer effects only (McAvinue et al., 2013; Tusch et al.,
2016; Simon et al., 2018). Most studies used objective and
standardized neuropsychological assessment tools. Others, for
example, studies assessing (verbal) working memory by n-back
tasks (25%), compared n-back task levels within different points
of time or used indexes from signal detection theory (Heinzel
et al., 2014a,b; Tusch et al., 2016; Matysiak et al., 2019) (for
details on prediction analyses and outcomes, see Table 3 and
Supplementary Material 4).

Predictor Variables and Prediction Results
Several different predictors for WMT responsiveness were
investigated, including individual-related sociodemographic
factors (e.g., age, sex, education), cognitive variables (baseline
performance, intelligence, processing speed), and biological
factors (genes, brain metabolism) as well as training-related
factors (e.g., adaptivity, dose of training). There were 13 analysis
approaches that investigated individual-related prognostic
factors only, two analysis approaches investigated a combination
of individual- and training-related characteristics, and eight
analysis approaches investigated training-related characteristics
only as predictors for WMT responsiveness. The results of the
prognostic analyses are reported in Table 3. As in most cases,
the direction of predictor effects did not vary systematically
between single-outcome variables, and within prognostic factor
finding vs. prognostic model studies, we decided to not further
distinguish between different outcome variables and prognostic
factor finding vs. prognostic model studies but indicate if
prognostic effects were found for direct training and/or near-
and/or far-transfer effects only. The described patterns of
prognostic effects only reflect frequencies of observed prognostic
relationships and do not take into account risk of bias and
further methodological shortcomings of the underlying studies.

Age was investigated in four of five prognostic model studies
and three of 18 factor finding approaches. With only few
exceptions for single-outcome measures reporting positive or
non-significant relationships, age was consistently found to be
a negative predictor for WMT responsiveness across direct
training as well as both near- and far-transfer effects, i.e.,
younger participants benefited more from the training than
older participants independent of outcome measures. Note,
however, that age as a continuous variable was dichotomized
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TABLE 3 | Prognostic analyses, outcomes, results, and timing.
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e
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F
o
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w
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p

Corr/Reg GLM Others

Borella et al.

(2013)

X

effect size

Verbal working memory 1d + ↓ X X 8

† ↓ X

Visuospatial working memory 1d † ↓ X

Short-term memory 1d ‡ ↓ X

Fluid intelligence 1d ‡ ↓ X

Processing speed 1d ‡ ↓ X

Inhibition 1d ‡ ↓ X

‡ ↓ X

Borella et al.

(2014)

X

ANOVA

Verbal working memory 1s + ↓ X X 8

Visuospatial working memory 1s † ↓ X X 8

X

effect size

Working memory 1d † Training modality: visuospatial – –

Verbal working memory 1d + Training modality: visuospatial – –

Visuospatial working memory 1d † Training modality: visuospatial – –

Short-term memory 1d ‡ Training modality: visuospatial – –

Fluid intelligence 1d ‡ Training modality: visuospatial ↓ –

Processing speed 1d ‡ Training modality: visuospatial – –

Inhibition 1d ‡ Training modality: visuospatial ↓ –

Borella et al.

(2017b)

X

linear mixed

models

Verbal working memory + ↓ X X 8

† ↓ – X – 8

Visuospatial working memory † ↑ ↓ X – 8

Short-term memory ‡ ↓ ↓ ↓ X – 8

Fluid intelligence ‡ ↓ ↓ X X 8

Processing speed ‡ – ↑ X – 8

Inhibition ‡ ↓ X – 8

Borella et al.

(2017a)

X

ANOVA

Verbal working memory + Music listening condition: Albinoni ↑ X – 6

Visuospatial working memory † Music listening condition – – – 6

Fluid intelligence ‡ Music listening condition: Albinoni ↑ X – 6

Phonemic verbal fluency ‡ Music listening condition – – – 6

(Continued)

F
ro
n
tie
rs

in
A
g
in
g
N
e
u
ro
sc

ie
n
c
e
|
w
w
w
.fro

n
tie
rsin

.o
rg

1
1

O
c
to
b
e
r
2
0
2
0
|
V
o
lu
m
e
1
2
|A

rtic
le
5
7
5
8
0
4

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


O
p
h
e
y
e
t
a
l.

P
ro
g
n
o
stic

R
e
vie

w
Tra

in
in
g
R
e
sp

o
n
sive

n
e
ss

TABLE 3 | Continued

Study Analysis Outcome Prediction results Timing

Model Factor finding D
e
g
re
e
o
f

tr
a
n
s
fe
r

B
a
s
e
li
n
e

p
e
rf
o
rm

a
n
c
e

In
te
ll
ig
e
n
c
e

A
g
e

E
d
u
c
a
ti
o
n

S
e
x

A
d
a
p
ti
v
it
y

D
o
s
e

o
f

tr
a
in
in
g

O
th
e
rs

P
o
s
t-

in
te
rv
e
n
ti
o
n

F
o
ll
o
w
-u
p

Corr/Reg GLM Others

Borella et al.

(2017c)

X

hierarchical

regression

Verbal working memory 1 + ↓ Strategy use ↑ X

† ↓ X 8

† ↓ X 8

† ↓ X 8

Visuospatial working memory 1
† ↓ X 8

Processing speed 1
‡ ↓ X

‡ ↓ X 8

Brehmer et al.

(2011)

X

ANOVA

Verbal working memory † – –

Visuospatial working memory † ↑ X

Short-term memory ‡ – –

‡ – –

Episodic memory ‡ ↑ X

Attention ‡ ↑ X

Reasoning ‡ – –

Inhibition ‡ – –

X

Pearson

Working memory 1max + ↑* X

Brum et al.

(2018)

X

ANOVA

Verbal working memory + – – – 6

† – – – 6

† – – – 6

Visuospatial working memory † – – – 6

† – – – 6

Verbal short-term memory ‡ – – – 6

Visuospatial short-term memory ‡ – – – 6

Reasoning ‡ – – – 6

Inhibition ‡ – – – 6

Semantic fluency ‡ – – – 6

X

Effect size

Verbal working memory 1d + – – – 6

† ↑ – X 6

(Continued)
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† ↓ X X 6

Visuospatial working memory 1d † ↓ – X 6

† – – – 6

Verbal short-term memory 1d ‡ – – – 6

Visuospatial short-term memory 1d ‡ ↓ – X 6

Reasoning 1d ‡ ↑ X X 6

Inhibition 1d ‡ ↑ X X 6

Semantic fluency 1d ‡ ↓ – X 6

Heinzel et al.

(2014a)

X

hierarchical

regression

Verbal working memory 1 + ↑ ↓ ? Baseline load-dependent BOLD ↑

gray matter volume ↑

X

+ ↑ ? ? ? Baseline load-dependent BOLD ↑

gray matter volume?

X

X

Pearson

Verbal working memory 1 + Baseline load-dependent BOLD ↑ X

Heinzel et al.

(2014b)

X

ANOVA

Verbal working memory + Val/Val ↓ X

Matysiak et al.

(2019)

X

linear

mixed

models

Verbal working memory max + ↑*

+ –

+ –

+ –

+ Occupational activity –

McAvinue

et al. (2013)

X

Pearson

Short-term memory ‡ ↓ X

‡ – –

Long-term memory ‡ – –

Anxiety and depression ‡ ↓ X

Simon et al.

(2018)

X

linear mixed

models

Working memory † ↑ Processing speed? X

† – ↑ X

Processing speed ‡ – – –

Set shifting ‡ – – –

(Continued)
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into young-olds vs. old-olds for three analytical approaches
investigating age as a predictor for WMT responsiveness (Borella
et al., 2013, 2014; Simon et al., 2018).

Education was investigated within two prognostic model
and two factor finding approaches. Education most frequently
constituted a negative predictor for direct training as well as
near- and far-transfer effects (Heinzel et al., 2014a; Borella
et al., 2017b); however, some analyses do not yield a significant
relationship at all (Tusch et al., 2016; Matysiak et al., 2019).
Whereas education was treated as a continuous variable in most
studies, Matysiak et al. (2019) dichotomized the variable for
their analysis. Sex was investigated in one prognostic model
and one factor finding approach but was not found to be a
significant predictor of WMT responsiveness in direct training
effects (Heinzel et al., 2014a; Matysiak et al., 2019) and was
not investigated in any prognostic approach on near- and/or
far-transfer measures.

Baseline performance in working memory tasks and/or
outcome measures was the most frequently investigated
prognostic factor (four of five prognostic model studies and
five of 18 factor finding approaches). For both near- and far-
transfer outcomes, baseline working memory and/or baseline
performance in outcome measure was consistently found to be a
negative predictor for WMT responsiveness (Zinke et al., 2012;
Borella et al., 2017b,c), i.e., individuals with lower performance
at baseline improved more from WMT than individuals with
higher baseline performance. However, for analyses on direct
training effects, heterogeneous results appear, with some
analyses indicating baseline working memory and/or baseline
performance in outcome measure to be a positive predictor
(Brehmer et al., 2011; Heinzel et al., 2014a; Weicker et al., 2018;
Matysiak et al., 2019), i.e., individuals with higher baseline
performance in training tasks achieving higher WMT task gains
than individuals with lower baseline performance. Baseline
performance, as a continuous variable, was dichotomized into
high vs. low performers by median split in two of the analytical
approaches (Zinke et al., 2012; Matysiak et al., 2019).

Intelligence was investigated within two of five prognostic
model studies and one of 18 factor finding approaches. For direct
transfer effects, the prognostic value remains unclear (Zinke et al.,
2014; Borella et al., 2017b). Furthermore, whereas there does
not seem to be a significant predictive value when intelligence
is investigated as a prognostic factor for near-transfer effects
(Zinke et al., 2014; Tusch et al., 2016) or when evidence points to
different prognostic directions (Borella et al., 2017b), a different
pattern emerges for far-transfer effects: if significant, for the
majority of far-transfer effect outcomes, the analyses indicate
intelligence to be a positive predictor of gains after WMT (Zinke
et al., 2014; Borella et al., 2017b), i.e., individuals with higher
intelligence show larger far-transfer effects after targeted WMT
than individuals with lower intelligence.

In the only study (prognostic model and prognostic factor)
investigating a functional imaging parameter as predictor for
WMT gains, individuals with a blood oxygen level-dependent
(BOLD) response pattern more similar to younger adults (i.e.,
higher load-dependent network Delta scores) showed higher
direct WMT gains (Heinzel et al., 2014a). Only one study
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investigated a genetic factor, yielding carriers of the Val/Val
catechol-O-methyltransferase (COMT) genotype to show less
direct training effects after WMT than the carriers of any Met
COMT genotype (Heinzel et al., 2014b).

With regard to training-related prognostic factors, the
prognostic effects of dose of training (investigated within two
studies) were mixed for both near- and far-transfer effects
(McAvinue et al., 2013; Brum et al., 2018), only marginally
comparable between studies because of different prognostic
factor operationalizations and not investigated for direct training
effects. Adaptivity was investigated within four studies and,
if significant, showed to be a positive predictor for WMT
responsiveness (Brehmer et al., 2011; Simon et al., 2018; Weicker
et al., 2018), with adaptive training regimes yielding better
results than non-adaptive training regimes, especially for near-
transfer effects.

DISCUSSION

This systematic review is the first one to evaluate prognostic
factors and models for WMT responsiveness in healthy older
adults. Within the 16 studies meeting our inclusion criteria,
five prognostic model approaches and 18 factor finding
approaches were included. One of the main findings is that
the methodological and reporting quality of prognostic research
within the evaluation of WMT regimes in healthy older
adults is often insufficient; therefore, no meta-analysis could
be conducted and no clear conclusions can be drawn from
the systematic review. Age, education, intelligence, and baseline
performance in working memory or other cognitive domains
were frequently investigated predictors across studies. However,
given the methodological shortcomings of the included studies,
emerging patterns of prognostic effects across direct training
as well as near- and far-transfer effects will have to survive
sound methodological replication in future attempts to promote
precision medicine approaches in the context of WMT.

First, our findings will be discussed within the methodological
framework of prognostic research; secondly, they will be related
to the theoretical framework of cognitive aging and embedded
into other prognostic research literature in the field of cognitive
interventions, and thirdly, they will be linked to findings from a
prognostic review on memory trainings in healthy older adults
(Roheger et al., 2020).

Methodological Considerations
Several methodological considerations and implications can be
derived from the present systematic review. First of all, it has
confirmed that prognostic research in the area of WMT in
healthy older adults is not yet fully established and is rather
premature. The prognostic framework is usually not indexed,
and the specific mention of the prognostic approach in titles or
abstracts is limited as well (Riley et al., 2019). For example, within
our included studies, only five studies used a prediction-related
terminology in their titles (Heinzel et al., 2014a,b; Zinke et al.,
2014; Borella et al., 2017b; Matysiak et al., 2019).

Furthermore, large heterogeneity appears throughout the
included studies with regard to study design (e.g., randomized

controlled trials vs. cohort studies vs. post hoc analyses) and the
applied analytical approaches. The applied analytical approaches
did not only differ widely per se but have differing suitability to
answer the question “who benefits most” from WMT regimes in
healthy older adults. In general, a prognostic factor is defined
as any measure that, among people with a given condition,
is associated with a subsequent outcome (Riley et al., 2013),
therefore implying at least some kind of a causal relationship.
The majority of studies in our systematic review, however, used
group comparisons (e.g., by ANOVA, t-test, comparison of effect
sizes) to investigate the influence of a group characteristic on
a given outcome. Despite the fact that these approaches can
only state whether the compared groups differ from one another
and not whether the investigated group characteristic linearly
correlate with or even causally predict the investigated outcome,
another important point needs to be highlighted: Whereas
some investigated prognostic factors are innately categorical
(e.g., sex, training modality, adaptivity), originally continuous
predictors (e.g., age, baseline performance) were frequently
dichotomized into artificial groups, for example, young-olds vs.
old-olds (Borella et al., 2013, 2014; Simon et al., 2018) and high
vs. low performers (Zinke et al., 2012; Matysiak et al., 2019).
Dichotomization of both dependent and independent variables is
strongly discouraged as it results in loss of information, possible
misunderstandings of actual continuous relationships, and severe
loss of power (Dawson and Weiss, 2012; Moreau et al., 2016;
Fernandes et al., 2019).

Another frequently used analytical approach was the
computation of correlation coefficients between predictor
variables and change scores in outcome measures after WMT.
However, no causal interferences can be derived from correlation
analyses (Bewick et al., 2003). Furthermore, correlations, for
example, between baseline performance and change scores
(which is obtained by subtracting baseline performance
from post-training performance), are less more than pure
statistical artifacts (Smoleń et al., 2018). Smoleń et al. (2018)
discuss that, unfortunately, even more advanced methods
such as multiple regressions and linear mixed models do not
guarantee the correct assessment of relationships between
predictor variables and respective outcomes. According
to the authors, the only correct method would be to use
direct modeling of correlations between latent true measures
and gain by structural equation modeling (Smoleń et al.,
2018). Future research on prognostic factors regarding
(working memory) training responsiveness should apply
advanced statistical methods such as latent difference score
models or growth curve analyses as highly flexible statistical
approaches from the structural equation modeling background.
On the one hand, this would allow to circumvent several
statistical fallacies clinical trial data often include, such as
violations of multivariate normality assumptions, non-linear
change trajectories, and missing data patterns (Newsom,
2015). On the other hand, it would allow to explore the
(statistical) properties of change through training without
actually calculating change scores and with highly flexible
options to model interdependencies between several variables
(Smoleń et al., 2018).
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In this context, one immense problem arises within prognostic
research on cognitive intervention programs per se and WMT
in particular: the lack of statistical power due to small sample
sizes. Prognostic research requires large sample sizes, with a
representative distribution of individuals’ characteristics and
values across the prognostic factors of interest. Especially for
(cognitive) training studies, researchers are confronted with the
challenge to overcome a self-selection bias to not only engage
highly educated, active, and motivated individuals within their
trials (Oswald et al., 2006; Schubert et al., 2014). As prognostic
research in this field often arises as an (explorative) add-on or
post hoc analysis of former data from randomized controlled
trials, sample size calculations at the stage of study design (if
present at all) do only take into account the sample size needed to
evaluate the effectiveness of a training regime (by comparing the
experimental group against at least one control group). For future
research in the field of personalized prevention and treatment
approaches for healthy aging, we encourage to emphasize the
outstanding importance of prognostic research by focusing on
the prognostic aim already during study design.

Importantly, as already discussed in the introduction,
prognostic analyses should always include data of at least
one control group as well to detangle predictors of specific
treatment response from general prognostic factors of retest
effects such as practice effects and regression to the mean
(Hingorani et al., 2013). None of the studies included in this
systematic review followed this recommendation. Therefore, the
identified prognostic relationships might represent systematic
relationships; however, they might exist in both treated
and untreated individuals and, therefore, not represent true
predictors of treatment response.

Beyond that, however, the large body of data on WMT
effectiveness for healthy older adults bears the enormous
potential of post hoc prognostic analyses, for example, as executed
by Borella et al. (2017b). Within the tradition of evaluating
similar WMT regimes, over the years several randomized
controlled trials to investigate the efficacy of similar training
regimes were carried out in this study group. As Borella et al.
(2017b) recognized large variability in the effectiveness of WMT
across individuals on the one hand and large heterogeneity across
results on earlier investigations on the influence of individual
characteristics on training outcomes on the other hand, they
merged the data of four earlier training studies (Borella et al.,
2010, 2013, 2017c; Carretti et al., 2013) to investigate an
individual’s characteristics related to WMT gains in a larger
sample. In other words, they conducted a tiny-scale individual
participant data (IPD) meta-analysis, the gold standard for
meta-analytical approaches. At this point, it should be noted
that Borella et al. (2017b) included data of participants from
the training groups of Borella et al. (2013) and Borella et al.
(2017c), two studies included in our systematic review as well.
Therefore, the prognostic results of these three studies are not
fully independent. However, we did not exclude the two earlier
works, as the exclusion would not have changed the results on the
(qualitative) directional prognostic effects. For future IPD meta-
analysis, the IPD data of either the four mentioned studies or
Borella et al. (2017b) should be included only.

Regarding the analytical approaches used and the results
of this review, it should further be mentioned that the
recommendation to focus on adjusted results to reveal whether
a certain index factor contributes independently and above other
prognostic factors (Riley et al., 2019) could not be met entirely:
most of the included studies in this review investigated only one
prognostic factor per analysis. However, as established prognostic
factors did not (yet) exist in the context of WMT responsiveness,
analytical approaches excluding possibly important confounding
variables are (at least in parts) comprehensible as well. For future
prognostic research in this field, however, we recommend to
include baseline performance and age as a minimum set of
control variables when investigating further prognostic factors.

Prognostic Factors for Working Memory
Training Responsiveness
Several different predictors for WMT responsiveness were
investigated, including individual-related sociodemographic
factors (e.g., age, sex, education), cognitive variables (baseline
performance, intelligence), biological factors (brain metabolism,
genes) as well as training-related factors (e.g., adaptivity,
dose of training). Given the methodological shortcomings of
the included studies discussed above, no clear conclusions
regarding prognostic effects can be drawn. Emerging patterns
based on frequently observed prognostic effects will have
to survive sound methodological replication in future
attempts to promote precision medicine approaches in the
context of WMT. Some inconsistent findings might be
due to statistical and psychometric artifacts, uncontrolled
extraneous influences, or the absence of convincing robust
prognostic relationships at all. Nevertheless, we would like
to provide a contextual framework for the discussion of
possible predictors for WMT responsiveness beyond pure
methodological issues.

The most frequently investigated predictor was baseline
performance. Despite the many different statistical approaches
and poor reporting quality in most studies, baseline performance
was, with exceptions for direct training effects only (Brehmer
et al., 2011; Heinzel et al., 2014a; Weicker et al., 2018; Matysiak
et al., 2019), identified as a negative predictor, i.e., individuals
with lower baseline performance are the ones that benefit most
fromWMT in terms of performance on neuropsychological tests
in the domains of workingmemory and other cognitive functions
(e.g., executive functions, short-term memory). Therefore, most
inconsistencies regarding the directionality of the prognostic
effect of baseline performance could be elucidated when taking
a look at the operationalization of the dependent variables.
The finding of baseline performance being a negative predictor
for cognitive intervention responsiveness is also common for
targeted memory trainings (Roheger et al., 2020) as well as
other cognitive intervention approaches such as multidomain
cognitive trainings (Whitlock et al., 2012; López-Higes et al.,
2018; Roheger et al., 2019). However, opposing findings exist
as well, indicating that higher baseline performance might be
indicative for cognitive intervention success (Fairchild et al.,
2013; Willis and Caskie, 2013). However, given the lack of
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comparisons of prognostic factors between WMT and control
groups within the included studies, the frequently observed
negative associations between baseline performance and change
through training might simply represent effects of regression to
the mean (Smoleń et al., 2018). This statistical artifact causes
negative correlations between baseline performance and gain by
noisy repeated measurements, where extreme values at the first
point of time tend to be closer to the mean at the second point of
time, without reflecting a real change (Smoleń et al., 2018).

Nevertheless, baseline performance as a predictor for training
responsiveness can be discussed within the compensation vs.
magnification framework (Lövdén et al., 2010, 2012). Following
this account, individuals with lower baseline performance would
show higher training benefits because they have more room
for improvement, whereas individuals with higher baseline
performance already perform at ceiling, leaving less room for
improvement. Improvements across individuals performing less
optimal at baseline might therefore represent some kind of
flexibility rather than plasticity. According to Lövdén et al.
(2010), flexibility represents “the capacity to optimize the brain’s
performance within current structural constraints, using the
available range of existing representational states.” Beyond this
flexibility, plasticity denotes the capacity for extending the
range of representational states, where flexibility then operates.
This understanding of plasticity, however, fits better with the
magnification hypothesis, constituting that individuals with
higher cognitive abilities would benefit most, as they have more
resources “to acquire, implement, and sharpen effortful cognitive
strategies” (Lövdén et al., 2012).

Within our systematic review, we also found hints for
this dualism between compensation vs. magnification or
rather flexibility vs. plasticity. Whereas, our findings regarding
baseline performance in neuropsychological test measures
might rather reflect mechanisms following the compensation
account, our findings regarding age as a possibly negative
predictor and intelligence as a possibly positive predictor for
WMT responsiveness are more interpretable in terms of the
magnification account. Higher (crystallized) intelligence might
constitute the required “hardware” to utilize the possibilities
given by WMT to extend the cognitive repertoire and, in the
broadest sense, reflecting cognitive plasticity. This perspective
is strengthened considering our finding that intelligence seems
to be a positive predictor for gains after WMT for far-transfer
effects only. Whereas, lower baseline performance might be
predictive for both near- and far-transfer effects (interpreted
in terms of the compensation account and flexibility: if there
is room for improvement, performance will be optimized by
training), higher cognitive abilities might be especially beneficial
for far-transfer effects, i.e., to transfer direct training effects
to untrained cognitive domains. The magnification account
might additionally be able to explain our finding that baseline
performance in trained tasks sometimes emerged as a positive
predictor for direct training effects. As most WMT regimes
adapted their difficulty to user performance across the course of
training and no ceiling effects could be expected, higher initial
levels might represent general cognitive ability rather than task-
specific baseline, and participants with higher initial levels in

training tasks might be more able to utilize the whole potential
of the training regime.

The second most frequently investigated predictor was age,
indicating that older individuals might benefit less from WMT
than younger individuals, even within the cohort of healthy
older adults above the age of 55. Age might be a proxy for the
course of the interplay between neural and cognitive plasticity,
which yields a higher potential for plastic changes in younger
age than in old-old age (Burke and Barnes, 2006; Greenwood
and Parasuraman, 2010; Li, 2013). Due to age-related reductions
in processing resources (Park and Bischof, 2013; Paraskevoudi
et al., 2018), the ability to engage in plastic changes after WMT
might be reduced in older age. This was already reflected in an
early meta-analysis on moderators of memory training effects
(Verhaeghen et al., 1992). However, findings in contemporary
cognitive intervention literature diverge and either report no
significant relationship (Willis and Caskie, 2013; Roheger et al.,
2019), positive relationships (i.e., the older the individual, the
more benefits) (Brooks et al., 1999), or negative relationships
(i.e., the younger the individual, the more benefits) (Fairchild
et al., 2013). In terms of differential prognostic effects for different
training regimes (e.g., WMT vs. memory training), this will be
further discussed below.

The only study investigating brain imaging parameters as
predictors for WMT responsiveness strengthens the finding of
our systematic review that age might be a negative predictor
for positive training responsiveness: Heinzel et al. (2014a)
found a more “youth-like” BOLD response pattern in healthy
older adults to be predictive of increased working memory
performance after training. This youth-like response pattern is
reflected in a higher load-dependent working memory network
Delta score, indicating that both high working memory network
efficiency (represented by decreased activation during low-level
tasks) and high working memory network capacity (represented
by increased activation during high-level tasks) are related to
plasticity (Barulli and Stern, 2013). This BOLD response pattern
has also been discussed as a biomarker for cognitive reserve
(Stern, 2009). Against this backdrop, one could hypothesize
that cognitive reserve and brain reserve constitute higher-
order predictors for WMT success and are operationalized by
several different proxies within the existing prognostic research
approaches (Stern et al., 2018).

Within the cognitive reserve framework, it is not uncommon
to find education alone as a proxy for this construct (Stern,
2002; Valenzuela and Sachdev, 2006; Stern et al., 2018). In our
systematic review, we found a tendency of education being
a negative predictor of WMT responsiveness. In cognitive
intervention research, it is discussed that cognitive interventions
might be able to diminish the cognitive reserve disadvantage
of less-educated older adults (Clark et al., 2016; Mondini et al.,
2016), thereby leading to more training-related gains. As this
might appear counterintuitive at first, it is important here
to differentiate between brain reserve and lifetime proxies of
cognitive reserve such as education, occupational attainment,
and leisure time activities (Stern et al., 2019). A higher cognitive
reserve is commonly associated with less cognitive deficits, given
the same brain pathology (Wilson et al., 2013; Hoenig et al.,
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2019). It follows that two individuals with similar cognitive
functioning but different educational backgrounds might also
differ in their brain pathology, i.e., the individual with higher
education might already show a higher level of brain pathology
compared to the individual with lower education, which in turn
comes down to lower levels of brain reserve for individuals
with higher education. Therefore, for the individual with lower
education, even though the lifetime cognitive reserve is lower,
the brain reserve might be higher, which corresponds to a better
hardware to adapt training benefits.

Only one study investigated a genetic factor as predictor for
WMT responsiveness in healthy older adults (Heinzel et al.,
2014b), revealing carriers of the Val/Val COMT genotype, which
is associated with reduced prefrontal dopamine metabolism, to
benefit less fromWMT than carriers of anyMet COMT genotype.
The COMT genotype affects prefrontal dopamine metabolism,
which is itself related to cognitive plasticity (higher prefrontal
dopamine metabolism = more cognitive plasticity) (Frias et al.,
2005; Diamond, 2007). Furthermore, previous research indicated
that advantageous dopamine-related genes are critically involved
in working memory performance and the ability to benefit from
WMT (Brehmer et al., 2009; Bellander et al., 2011; Bäckman and
Nyberg, 2013), which further strengthens the finding of Heinzel
et al. (2014b) that these relationships are also present in healthy
older adults.

We did not find a consistent influence of sex on
responsiveness to WMT in healthy older adults, even though
some kind of “sex-specific plasticity” and following sex-specific
differences between training responsiveness to different cognitive
domains are proposed in literature (Beinhoff et al., 2008; Rahe
et al., 2015; Roheger et al., 2019). Note, however, that sex as a
prognostic factor for WMT responsiveness was investigated in
two studies with direct training effects as dependent variable
only. Therefore, no final conclusions can be drawn. Even though
motivational factors and personality traits are discussed to
play a significant role in predicting responsiveness to general
cognitive interventions (Colquitt et al., 2000; West et al., 2008;
Studer-Luethi et al., 2012; Double and Birney, 2016; Kalbe et al.,
2018), they were not yet investigated as prognostic factors within
the WMT context.

Summarizing possible prerequisites for WMT responsiveness,
we hypothesize that there has to be not only room for
improvement (i.e., lower baseline performance) to engage in
training-related cognitive flexibility but also sufficient “hardware”
(e.g., age, intelligence, brain metabolism, genetic variation) to
engage in training-related cognitive and neural plasticity. It
needs to be highlighted again that the body of evidence (so
far) is too weak to draw clear conclusions. Even though some
findings fit well into the compensation vs. magnification account
and the cognitive reserve framework, future studies of high
methodological quality will have to replicate those findings.

Regarding dose of training as one training-related prognostic
factor investigated in the context of WMT responsiveness, results
were mixed and are in accordance with heterogeneous results in
literature. For example, Teixeira-Santos et al. (2019) identified
shorter compared to longer training durations to be beneficial

for training outcome. However, they discuss this finding to be
unexpected and influenced by confounding factors such as the
type of outcome variable and highly heterogeneous training
durations that impede comparability between studies. All of the
included studies in our review implemented an adaptive training
regime, where the task difficulty adapted to user performance.
Four studies compared adaptive vs. non-adaptive WMT regimes,
with adaptivity emerging as a positive predictor for training
responsiveness. Adaptivity of trained task difficulty is discussed
to contribute to the maintenance of training motivation and
the avoidance of underchallenging and overstraining participants
during training (Weicker et al., 2016). However, some studies did
not find beneficial effects of implementing individually adaptive
training regimes (von Bastian and Eschen, 2016).

Only one study within our systematic review used a multi-
domain training. Zinke et al. (2014) included an executive
control task next to several working memory tasks within their
WMT regime. Executive control might, however, strongly be
dependent on working memory (Chai et al., 2018). Even though
we cannot evaluate the contribution of single training tasks or
the training of single domains to the overall prognostic effects,
we conclude that this exception from targeted WMT does not
constitute a danger for the validity of our findings regarding
WMT responsiveness.

Working Memory Training vs. Memory
Training
Just recently, a systematic review on prognostic factors of
memory improvements after memory training using a similar
systematic review technique has been published (Roheger et al.,
2020). Roheger et al. (2020) identified further methodological
shortcomings of prognostic research in the context of memory
training and, on a content-related level, more vulnerable
individuals (e.g., lower baseline performance, higher age) to
benefit most from memory training. They also identified several
“hardware” factors (e.g., hippocampal volume, genetic variation
in apolipoprotein-E-4) as prognostic factors. Primarily, however,
the direction of age as a prognostic factor seems to differ between
the two training regimes.

We hypothesize this difference to be due to the different
cognitive training approaches investigated. Memory training,
as investigated by Roheger et al. (2020), can be referred to
as a strategy-based training, whereas WMT can be referred
to as a process-based training (Lustig et al., 2009; Teixeira-
Santos et al., 2019). Whereas strategy-based trainings focus
on the application of specific strategies to a task where the
target population typically does poorly, process-based trainings
focus on tasks that load on a specific cognitive function,
however, without explicit strategy training (Lustig et al., 2009).
Thereby, process-based trainings are believed to produce more
transfer effects to untrained domains, as untrained cognitive
functions might depend on the targeted cognitive domain (Lustig
et al., 2009; Teixeira-Santos et al., 2019). This difference in
the conceptualization of memory training vs. WMTs, however,
implicates different levels of cognitive demands that have to
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be met in order to benefit from the trainings. Given the
higher cognitive demands of WMT, we hypothesize that younger
individuals might benefit more, as their hardware potential
to engage in neural and cognitive plasticity is higher. Older
individuals, however, might be less able to engage in neural
plasticity but might therefore rather benefit from strategy-based
training approaches, optimizing their cognitive performance
within a given structural constraint in terms of flexibility (Lövdén
et al., 2010, 2012). In the framework of Lövdén et al. (2012),
WMT gains equal practice gains that are related to plasticity
and better fit the magnification model, whereas memory training
gains equal instruction gains that are related to flexibility and
better fit the compensation account. Further research is necessary
to prove this concept, but we are convinced that these findings
highlight the urgent need for personalized cognitive prevention
and intervention methods to counteract cognitive decline at best
for every individual.

Another systematic review and meta-analysis on prognostic
factors and models of cognitive and behavioral changes
after multidomain cognitive training in healthy older adults
is still ongoing (preliminary Prospero ID 147531). Those
findings, in combination with the findings of the present
systematic review and of Roheger et al. (2020), will further
contribute to the understanding of which cognitive interventions
yield best outcomes for which individual. Furthermore, the
discussion around precision medicine in the context of cognitive
interventions can be taken to a whole new level if one would not
only consider the cognitive domain trained (or the combination
of domains) but also the nature of the training tasks, the training
setting (e.g., computerized vs. paper–pencil vs. mixed, home-
based vs. individual vs. group settings), and its intensity. So far,
however, the body of data is too small for subgroup analyses.

Strengths and Limitations
This systematic review is, to the authors’ best knowledge, the
first one to systematically assess prognostic factors and models
for WMT responsiveness in healthy older adults on a single-
person-within-study level rather than investigating moderating
factors in a meta-analysis on a study-wide aggregated level
as done in a recent meta-analysis on WMT in healthy older
adults (Teixeira-Santos et al., 2019). Further strengths include
the applied methods following the PICOTS system to define our
review question, the CHARMS checklist for data extraction, and
the PRISMA guidelines for the reporting of systematic reviews
(Moher et al., 2009; Moons et al., 2014; Debray et al., 2017;
Riley et al., 2019). One limitation is that, due to insufficient
reporting quality throughout many of the included studies, the
studies in their entirety were sometimes difficult to comprehend,
information might be misinterpreted by the reviewers, and
results should be interpreted cautiously. It follows that as
already discussed above, due to methodological heterogeneity,
we were not able to perform a quantitative meta-analysis but
had to focus on the qualitative directionality of the prognostic
effects, limiting the validity of our findings. Furthermore, the
applied WMT regimes within our included studies were highly

heterogeneous regarding training duration, training tasks, and
training setting. Only a multi-level IPD meta-analysis might
be able to appropriately investigate the interplay of training-
related and individual characteristics to answer the question
“who benefits most.” Additionally, the analyses to identify
predictors of WMT responsiveness were conducted with data
of the WMT groups only. Therefore, they did not control for
effects in the control group (Hingorani et al., 2013), which
impedes disentangling predictors of WMT responsiveness from
predictors of retest and practice effects (Calamia et al., 2012).
In this context, we need to admit that on the design stage of
this systematic review, no comparator factor (C in PICOTS)
was being considered as our aim was to systematically assess
any approach to prognostic research on WMT responsiveness.
Furthermore, even though the risk of bias assessment followed
the QUIPS checklist (Hayden et al., 2013) across six domains,
the overall rating procedure across the items of one domain and
across the six domains is not standardized by the developers.

CONCLUSION

To summarize, prognostic research within the evaluation of
WMT regimes in healthy older adults is still underrepresented
given the urgent need for personalized cognitive prevention
and intervention methods to counteract cognitive decline. Given
the methodological shortcomings of the included studies, no
clear conclusions can be drawn, and emerging patterns of
prognostic effects will have to survive sound methodological
replication in future attempts to promote precision medicine
approaches in the context of WMT. However, within the
small body of evidence and despite the complex relationships
between cognitive reserve, neural plasticity, and different proxies
for these constructs, it seems that the requirements for both,
flexibility and plasticity, have to be met. An IPD meta-
analysis might be able to overcome the current research gaps
regarding prognostic factors for WMT responsiveness in healthy
older adults.
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